ASYMMETRIC HYDROSILYLATION OF a, B-UNSATURATED CARBONYL COMPOUNDS

Tamio Hayashi, Keiji Yamamoto, and Makoto Kumada*

(Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan)

(Received in Japan 6 November 1974; received in UK for publication 19 November 1974)

Catalytic hydrosilylation of ketones¹ and imines² may be considered as a synthetically equivalent means to the reduction of these compounds The reaction is of considerable use for enantioselective reduction of $C=0^3$ or $C=N^4$ bonds when chiral rhodium complexes are employed as catalysts

As an extension of our studies on the asymmetric hydrosilylation of prochiral olefins⁵ and ketones^{3a} catalyzed by Group VIII transition metal complexes with chiral phosphine ligands, we report here the asymmetric 1,4-addition of hydrosilanes to a, β -unsaturated ketones using chiral phosphine-rhodium complexes as catalysts.

In 1959, Sadykh-Zade and Petrov reported that chloroplatinic acid-catalyzed hydrosilylation of α , β -unsaturated carbonyl compounds takes place in a 1,4 fashion.⁶ Recently, Ojima, Kogure, and Nagai have found that highly selective 1,2- as well as 1,4-addition of hydrosilanes to α , β unsaturated terpene ketones can be achieved, the selectivity depending markedly on the nature of the hydrosilane employed 7

We have now found that the chiral cationic complex, $[\text{Rh}(R) - (\text{PhCH}_2)\text{MePhP}\}_2H_2S_2]^{\dagger}$ ClO_b⁻ (S = solvent), ^{3a} prepared in situ catalyzes the asymmetric hydrosilylation of α , β -unsaturated ketones under mild conditions. A catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino) butane $[(-)$ -diop]^{3c} was also used in the present reactions.

Thus, addition of dimethylphenylsilane (30 mmoles) to (E) -4-phenylpent-3-en-2-one (1) (30 mmoles) in the presence of the chiral cationic complex (3x10⁻² mmole) dissolved in benzene at room temperature gave only a 1,4-adduct, 2-dimethylphenylsilyloxy-4-phenylpent-2-ene (3), 8 bp. 121-123°/0.04 mm, α_0^{20} -0.68° (0.1 dm, neat), in 76% yield Hydrolysis of 3 with potassium hydroxide in aqueous methanol gave 4-phenylpentan-2-one (7) , (a) a (1) a (2) -5.31° (neat).

4 k. 1

$$
\begin{array}{llll}\n\text{Ph} & \text{C=C} & \text{H} & \text{HSiM}_{2}R^{2} & \text{[Rh*]} \\
\text{Me} & \text{COR}^{1} & \text{HSiM}_{2}R^{2} & \text{PhM} & \text{CHCH-C} \\
\text{L} & R^{1} & = \text{Me} & R^{2} & = \text{Ph} & \text{J} & R^{1} & = \text{Me} \\
\text{2, R}^{1} & = \text{Ph} & \text{or Me} & \text{J} & R^{1} & = \text{Me} & R^{2} & = \text{Ph} & \text{J} & R^{1} & = \text{Me} \\
\text{3, R}^{1} & = \text{Me} & R^{2} & = \text{Ph} & \text{J} & R^{1} & = \text{Me} \\
\text{4, R}^{1} & = \text{Me} & R^{2} & = \text{Me} & \text{g} & R^{1} & = \text{Ph} \\
\text{5, R}^{1} & = \text{Ph} & R^{2} & = \text{Ph} & \text{g} & R^{1} & = \text{Ph} \\
\text{6, R}^{1} & = \text{Ph} & R^{2} & = \text{Me} & \text{g} & R^{1} & = \text{Ph} \\
\text{[Rh*]} & = [\text{Rh}((R) - (\text{PhCH}_{2})\text{MePhP}]_{2}H_{2}\text{S}_{2}]^{+} \text{ClO}_{4}^{-} & (\text{abbr. R}_{3}\text{P}^{+} - \text{Rh}^{+}) & \frac{1}{2}[(\text{C}_{6}\text{H}_{10})\text{RhCl}]_{2} + (-) - \text{d} \text{op} & (\text{abbr. dop-Rh})\n\end{array}
$$

Hydrosilylation of <u>1</u> with trimethylsilane produced, after hydrolysis, the same saturate Ketone (7) of lower optical activity \mathcal{I} was further converted into 2-phenylpropanol (9)¹⁰ in order to confirm optlcal purity (eq. 2).

$$
\text{PhMeČHCH}_2\text{COMe} \quad \xrightarrow{\text{PhCO}_3\text{H}} \text{PhMe\text{CHCH}_2OC0Me} \quad \xrightarrow{\text{KOH/H}_2\text{O}} \text{PhMe\text{CHCH}_2OH} \tag{2}
$$
\n
$$
\frac{7}{\sqrt{5}} \left[a \right]_D^{25} - 5.31^{\circ} \qquad \qquad \frac{9}{\sqrt{5}} \left[a \right]_D^{20} - 2.14^{\circ}
$$

Hydrosilylation was also carried out with (E) -1,3-diphenylbut-2-en-l-one (2) in the presence of R_3P^* -Rh⁺ or diop-Rh to give optically active 1-dimethylphenylsilyloxy-1,3-diphenylbut-1-ene $(5)^{11}$ or its trimethylsilyloxy analog (6) , respectively. 5 and 6 were converted by hydrolysis into known 1,3-diphenylbutan-l-one (8) . ¹² $(5)(a)$ ₀²⁵ -1.47[°]) was successively treated with perbenzoic acid and lithium aluminum hydride to obtain 3-phenylbutanol $(10)^{13}$ $([\alpha]_0^{25}$ -3.94°). The results thus obtained are summarized in Table 1.

Table 1. Asymmetric Hydrosilylation of α, β -Unsaturated Ketones Catalyzed by Chiral Phosphine-Rhodium Complexes^a at Room Temperature.

R ¹	R^2	Catalyst	Yield $(*)$	Silyl enol ether α_{D}^{20} (0.1 dm, neat)	Ketone $\lbrack \alpha \rbrack^2_D$	Configu- ration	Optical y ield $(*)$
Me	Ph	$R_3P^* - Rh^+$	76	-0.680	-531^b	\boldsymbol{R}	15.6°
Me	Ph	d1op-Rh	92	-0.356		\boldsymbol{R}	6.4
Me	Me	$R_3P^* - Rh^+$	90	-0 153	-0.47^{b}	\boldsymbol{R}	14°
Ph	Ph	$R_3P^* - Rh^+$	72	-2.62^d		\boldsymbol{R}	10.0 ^c
Ph	Ph	diop-Rh	83	$-1.09d$	$-0.48^{\rm e}$	\boldsymbol{R}	3.3
Ph	Me	R_3P^* -Rh ⁺	94	-0.123	$-1.09e$	\boldsymbol{R}	9.5°
Ph	Me	diop-Rh	87	-0.162	-1.47^e	R	10.1

 a [Rh*] = 0 1 mole³. ^b Neat. ^C Calibrated for the optical purity of the chiral phosphine used (79%) d Specific rotation in benzene (c 10). e In CC14 (c 5). lo. 1

It is noted that in all cases $R_3P^*-Rh^+$ or diop-Rh catalyzes the addition reaction to give (R) -ketones preferentially, that is, the addition in a sense of selecting a si -si face of carboncarbon double bonds of α , β -unsaturated ketones in an *E* form whether R^1 is methyl of phenyl group

Attempted asymmetric hydrosilylation of β -methylcinnamaldehyde (11) with trialkylsilane resulted in giving not only 1,4-adduct (12) but 1,2-adduct (13) (eq. 3), the ratio of 12 to 13 was 64/36 with trimethylsilane, and 59/41 with dimethylphenylsilane, respectively However, 12 was obtained in an optically inactive form

$$
\begin{array}{cccc}\n\text{PhMeC=CHCHO} & \xrightarrow{\text{HSMe}_{2}R^{2}} & \text{PhMeCHCH-C} & \xrightarrow{\text{OHMeC}R^{2}} & \text{PhMeC=C} & \xrightarrow{\text{CH}_{2}OS_{1}Me_{2}R^{2}} \\
\downarrow & & \downarrow & & \uparrow & \\
\downarrow & & & \downarrow & & \downarrow & \\
\downarrow & & & & \downarrow & & \downarrow & \\
\downarrow & & & & \downarrow & & \downarrow & \\
\downarrow & & & & \downarrow & & \downarrow & & \downarrow & \\
\downarrow & & & & & \downarrow & & \downarrow & & \downarrow & \\
\downarrow & & & & & \downarrow & & & \downarrow & & \downarrow & \\
\downarrow & & & & & & \downarrow & & & \downarrow & & \downarrow & \\
\downarrow & & & & & & \downarrow & & & \downarrow & & \downarrow & & \downarrow & \\
\downarrow & & & & & & \downarrow & & & \downarrow & & & \downarrow & & \downarrow & & \downarrow & & \\
\downarrow & & & & & & & \downarrow & & & \downarrow & & & \downarrow & & & \downarrow & & \\
\downarrow & & & & & & & & \downarrow & & & \downarrow & & & \downarrow & & & \downarrow & & \downarrow & \\
\downarrow & & & & & & & & & \downarrow & & & & \downarrow & & & \downarrow & & & \downarrow & & \\
\downarrow &
$$

Of particular slgnlflcance 1s the preparation of optically active silyl enol ethers, which are well suited for generation of metal enolate species.¹⁴ We are currently investigating the asymmetric hydrosilylation of certain cyclic enones and alkylation of the resulting chiral enolates

REFERENCES AND NOTES

- 1 a) I Ojima, M Nihonyanagi, and Y Nagai, Chem. Commun., 938 (1972). b) I Ojima, T Kogure, M.Nihonyanagi, and Y Nagai, Bull. Chem. Soc. *Japan*, 45, 3506 (1972). c) R J. P Corriu and J. J E Moreau, Chem. Commun., 38 (1973).
- 2. I Ojima, T Kogure, and Y. Nagai, Tetrahedron Lett., 2475 (1973)
- 3 a) K Yamamoto, T Hayashi, and M. Kumada, *J. Organometal. Chem.*, 46, C65 (1972), *idem*, *ibid.*, 55 c45 (1973) b) I. OJima, T Kogure, and Y Nagai, Chem. *Lett.,* 541 (1973), idem, *Tetrahedron Lett.,* 1889 (1974). c) W Dumont, J.-C Poulln, T.-P Dang, and H B. Kagan, *J. Amer. Chem. Sot., 9!S, 8295* (1973). d) R J. P. Corriu and J J. E Moreau, *J. Organometd. chem.. 64,* c51 (1974)
- 4 N. Langlois, T -P. Dang, and H. B Kagan, Tetrahedron Lett., 4865 (1973)
- 5. Y. Klso, **K.** Yamamoto, K Tamao, and M. Kumada, *J. Amer. Ghan. Sot., 3,* 4373 (1972), and related papers cited thereln
- 6. S I. Sadykh-Zade and A D Petrov, *Zh. Obshch. Khim.*, 29, 3194 (1959) [*Chem. Abstr.*, 54, 12978 (1960)].
- *8.* This compound consists of (E) - and (Z) -isomers in a ratio of 20.80 on the basis of NMR analysis of the mixture. NMR (CCl₄/TMS): (E)-3, 6 0.36 (s, SiCH₃), 1.22 (d, $J = 7.6$ Hz, CHCH₃), 1.81 (broad s, =CCH₃), 3.2-4.0 (m, CHCH₃), 4.45-4.85 (d, =CH), and 6.9-7.6 ppm (m, C_6H_5). (Z)-3, 6 0 41 (s, SiCH₃) and 1.69 ppm (s, =CCH₃), and other signals are indistingu-1shable from those of (E) -3.
- 9. Cookson and Kemp [Chem. Commun., 385 (1971)] have reported the specific rotation of optically pure χ to be $[a]_n$ -74.5° (c 1, benzene) The value, however, is inconsistent with that correlated with optical purity of the alcohol 9 (of. ref. 13).
- $10.$ S. P. Bakshi and E. E. Turner, J. Chem. Soc., 171 (1961); (S) -2-phenylpropanol (9) has $\begin{bmatrix} \alpha \end{bmatrix}_{D \text{ max}}$ -17 4° (neat).
- 11. NMR indicates only a (Z) -isomer. NMR (CCl_{μ}/TMS) 6 0.32 (s, SiCH₃), 1.23 (d, $J = 7.2$ Hz, $CHCH_3$, 3.53-4.06 (double q centered at 3.78, $CHCH_3$), 5 24 (d, $J = 9.6$ Hz, =CH), and 6 9-7.6 ppm (m, C_6H_5)
- 12 T. L. Leitereg and D. J Cram, *J. Amer. Chem. Soc.*, 90, 4011 (1968), Optically pure (R)-1,3diphenylbutan-l-one (8) has $[\alpha]_D$ -14 6° (c 1.8, CC14).
- 13. This conversion indicates that the optical purity of the ketone (8) corresponds exactly with that of the alcohol (10) , of. H Rupe and F. van Walraven, Helv. Chim. Aota, 13, 361 (1930) ; $[\alpha]_{B \text{ max}}$ -39.56° (neat)
- 14 G Stork and P. F. Hudrllk, *J. Amer. chum. Soo., 90,* 4462 (1968).